ARDUINO SIGNAL DRIVER FOR SCALE TRAINS

v 1.0 - Dario Calvo-Sanchez, 2021
https://elgajoelegante.com

English version from original “Control de semdforos de trenes a escala con Arduino”

Arduino-based LED signal control software for scale railroad models, using PCA9685 PWM boards, with the following key
characteristics:

e Control of up to 12 signals with a maximum of 48 lights. Practically any signal can be controlled:
o In common-anode configuration, the maximum number of lights per signal is 4 (up to 3 of which can be lit up
simultaneously)
o In common-cathode configuration, the maximum number of lights per signal is 5 (all of which can be lit up
simultaneously if required)
e Compatible with both analogue and digital systems

e A mix of common-anode and common-cathode signals can be connected to the system

e A mix of signals with different number of lights can be connected to the same or different PCA9685 boards. Even one
signal can have some lights connected to one board and the rest to a different one

e Alllights in a common-anode signal will have the same brightness, no matter the number of lights switched on
simultaneously on that signal

e Selectable dimming rate, independent of the number of signals or lights connected, allowing realistic representation of
any signal type

e Selectable blinking rate

e Allcommanded lights in a signal will light up or turn off at the same time

e No practical limit in the number of PCA9685 boards that can be connected (up to its maximum of 62)

e Definitions are included for typical Spanish RENFE/ADIF signals, although any signal from any railroad can be defined by
the user

e Rocrail SVG files included

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
https://elgajoelegante.com/

2

TABLE OF CONTENTS

L INEPOTUCTION ettt et e sh bt e e ab e e s a bt e e ab e e sa bt e e ab e e sa b e e eab e e sab e e eabeesa ke e e abeesabeeeabeesabeeeabeesabeeebee e beeeneenane 3
B 0T U1 = 4 1T o OO TP PP PP PPRPPTN 3
K TN [0 15 7= 1 51 4 T o IS PSP PR PRRPOP 4
3.1 OVEIAII VIBW ..ttt ettt e s h e at e e s h bt e e at e e s h bt e at e e sa b e e eab e e sa b e e e ae e e sa b e e eabeesab e e eabeesabeeeabeesabeesaneesabeennneess 4
3L11 DiGILAl SYSTEIMS ittt ettt e et e s bt e bt e s b et et e e s bt e et e e s b et e bt e s b et e bt e e b e e e bt e s be e e nee s beeeabeeebeeenee et 4
I 0 A Y F=1 [Y= {0 LIy =Y o U RS 5
3.1.21 IMIANUAE MIOTE ettt ettt e et s a bt e s a et e s ab e e s ae e e sa b e e hb e e sabeeeabeesabeeenbeesabeeeabeesabeeeaneenn 6
3.1.2.2 AULOMATIC MO ...ttt a e s e st e s b e b e e aa e e e e saeesreesreennees 7

3.2 Connecting Arduino and PCAGBS85 DOAIMSccuviiiiiieeiiiieeeciii et e e sctee e e e tte e e e taee e s taeeeesstaeeseassaeesataaeeeassaeesessseesnsseeaans 7
3.3 Y7o =1 ol o o T=Tot o o I3 P SPR 9
IS 70 A 0T Yo' To T W or= Nl a Lo Lo TR 14 T £ SRR 9
oI 70 A 0T Y1 VoY =Y Lo Yo LI = o =Y USRI 10

3.4 [=Tt d g Tor= 1IN {=T=To [T Y= SRRSO PR 10
3.5 L oY= =10 0 T L U] o PP TPPPPPRN 11
= 15 R 00T 0o Vo o [o] AW o -1 = [4 a L=L (=] SO OON 11
3.5.2 Digital version SPECIfiC PAramMELEIScccciiiiiiee et et e et e e et e e et e e e s bt e e e et ta e e e e aaeaestbreeenntaeeeaaraeas 13
3.5.3 Analogue version SPECITIC PAramMETEISuiiiceiiie ettt e e e et e e st e e e st e e seate e e sbaeeeessteeesassaeaessteeeennteeeeanrees 14

L U L o= B oYW o T o= = st JP USSP 15
4.1 Digital VEISION SPECITICS ..uviiiiiiiiieiiiiee ettt e e et e e et e e e et ae e e e e tteeeeeateeestbeeeeastaeeeesssaeesssasaestseeeanssaeesassaaeeansseeeannes 16
4.2 JAN o Lo U TRV LT e 1o IR o 1= oL] ok S 20

LT o 0] o] [=T o Voo T oY= SRRSO 21
ApPPENdiX 1: ArdUINO DCC AECOUEL ...viiiiiieieciieeeetee ettt e e ettt e e e tte e e eeateeeesbaeeaesttaeeeassaaeeaabasaeastaseaassaseessbsseeanssasesassaseeansbeaeeastaeesansenas 22
Appendix 2: COMMON-AN0UE CONVEITEI CIMCUIT...icuuiieieitiereiiteeeeitereertteeesteeeestteeesseeeeestaeeeessseeessssseeessseesassseesssseeessseeessssseessseees 25
Appendix 3: Modifying the SIZNal SYSTEMc.uiii et e et e e et e e e s ba e e e esate e e e abaeeesabseeeaastaeaeeasaaeeensbeaeenssaeesensenas 27

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

1 INTRODUCTION

‘ w

This system is a driver for scale railway LED signals. It just makes each signal to show the appropriate commanded aspect. It
therefore requires a way to send that command to the driver (see section 3.1).

There are hundreds of algorithms like this, but most of those only care about red & green semaphores, or do not allow mixing
different types of signals. This system offers greater flexibility, allowing accurate representation of practically any real-life
railroad light signal, both in digital and analogue systems. It is also fully configurable in terms of dimming and blinking.

The main difference with other systems is the use of PCA9685 PWM boards, which are designed mainly for servo-motor
controlling, but can handle LED lightning effectively as a secondary function. Usual Arduino outputs can drive LED lights easily,
but using these boards we’ll be able not only to get some of the advantages mentioned above (such as the possibility to mix
common-anode and common-cathode signals in a simple way) but also to connect a greater number of signals without needing
the extra pins on an Arduino Mega. On top of that, pins on the Arduino board will be almost completely free for other purposes
(like connecting a keypad to control the signals in an analogue layout). Another advantage is that electrical feeding for the
signals can remain totally independent from the Arduino.

The final reason: PCA9685 boards are cheap. Particularly when paired to an Arduino Nano and compared to an Arduino Mega.

2 REQUIREMENTS

This guide assumes some basic knowledge on Arduino and its programming, and some basic skills on electronics (components,
set-ups and elementary circuits)

Minimum requirements:

e Arduino board (a Nano will suffice in most of the cases)

e PCA9685 PWM boards: as many as required (normally no more than 3)

e 5V DC power source (an old USB phone charger can do the trick)

e Common-anode converter circuits (if signals are of the common-anode type), see Appendix 2
e Command method: push buttons, decoders, reeds, automated systems, etc (see 3.1)

Recommended:

e In case of running the system on a digital layout, it is highly recommended that both the command station and the
control software (if computer-controlled) support the “Signal Aspect” protocol to handle multi-aspect signals (see
Chapter 4). That will simplify the whole system set-up, and it is the only protocol supported on this Guide.

The code requires public libraries Adafruit_PWMServoDriver.h to control PCA9685 boards, and Wire.h to handle 12C bus
communications. Both are available by default in current official Arduino IDE versions.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

3 INSTALLATION

3.1 OVERALL VIEW

This program is a signal driver. It manages to show the right signal aspect from those defined on a particular signalling system,
including any required blinking or dimming. It therefore requires an input system to command each signal.

Basic schematic setup is shown on Figure 1:

. Common-
Input method |:> Arduino

cathode signals

Common-anode

Converter circuit .
signals

Figure 1: General scheme

There are different possibilities for the input method. On a digital layout, a decoder will be used as an interface between the
command station and the Arduino driving the signals. On an analogue layout there will be several options, from simple push
buttons to automated systems using reed contacts, relays, etc.

In any case, the Arduino will receive the orders from the input method, will assign the right aspect to each signal, and it will
control the PCA9685 boards to power them. If the signals are of the common-anode type, a converter circuit will be required in
between (see section 3.3.2).

3.1.1 DIGITAL SYSTEMS

On a digital layout, the input method will be an accessory decoder that will translate the orders from the command station to a
command array with the aspects in all controlled signals, using the format defined on Chapter 4). However, most decoders sold
currently in the market will not be adequate for this purpose. Fortunately, this decoder can be built in a cheap and easy way
using another Arduino board, and connecting both boards through the serial port.

Figure 2 shows a connection scheme. The Arduino Nano board on the upper part serves as a decoder, sending translated
commands to its sibling directly below, which drives the signals through the PCA9685 boards on the right-hand side of the
picture. Note that the wires connecting both Arduinos are crossed, so each TX1 transmitting pin is linked to the RXO0 receiving pin
and vice-versa.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

ONING¥Y

PCA9EBS "
i1k % 12-bit PUM

I | | Tdar‘run!
o3 2 3 4 5 b 7

pCadeas POUER

1k x 1l2-bit PUM
td-ﬁ"l’ujb!

L
PCAgeBs POUER

|1k x 12-bit PUM

I I | .t-j.afruit!
1.2 3 4 5 b F-——

Figure 2: Overall setup on a digital layout

One important remark: it is technically possible to integrate the decoder function on the Arduino board driving the signals, thus
avoiding the need to buy another Arduino. However, this is not recommended because of the following reasons:

1) When integrating the decoder function, available memory on a Nano board reaches its limit, making it unstable.

2) Usual decoding routines increase processor load. Controlling more than eight signals will cause the program to behave
erratically, skipping command station orders, taking a lot of time to change a signal aspect, or impacting on the blinking
or dimming routines. Using an Arduino Mega will not solve these problems, as it has more memory but roughly the
same processing capability.

3) Installation with a separate decoder is “cleaner”, and more flexible if changes need to be introduced or any breakdown
occurs. Current prices of Arduino Nano boards are quite cheap, so it does not make a true difference in terms of
economy. On top of that, all decoding functions needed for signals, switches, lightning, and other accessories can be
put together in this single additional board.

This software, as it is provided, assumes there will be an external decoder. See Appendix 1 for instructions to build a compatible
decoder.

3.1.2 ANALOGUE SYSTEMS

On analogue layouts, wiring and setup will depend on the particular configuration and degree of automation. In this document,
only the manual mode will be covered.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

3.1.2.1 MANUAL MODE

In this case, push buttons will be connected to the Arduino board pins, serving as an input method to command the signals (see
Figure 3). Normally, signal aspects will not have any automated influence on running trains: signal interpretation will be the train
driver’s responsibility. This is the simplest way to control complex signals with many different aspects.

Each Arduino’s free 1/0 pin will handle a push button, being the other terminal of the button connected to the common GND
Arduino pin. Not only the digital pins (DO to D13, numbered in the software code as 0 to 13) could be used for this purpose, but
also the eight analogue ones (A0 to A7, numbered in the code as 14 to 21). The exceptions are the two pins used for the 12C bus:
A4 and A5 (18 and 19 in the code). Check the manual in case an Arduino board different than a Nano.

The simplest way to arrange the push buttons, which is the one used in this code, is to dedicate some of those to select the
aspect, and the rest to select the signal. In this way, we would push first one of the buttons to select a signal, and then another
one to select its desired aspect (go, stop, caution, etc.); optimizing the limited number of pins available.

2/

PCATLAS
jLb x L2-bit PWM

| | | Tda!’v‘ul['
1 2 3 4y 5 L In—

POWER

LE
PCATLES TOVER

j1b x 1l2-bit PWM

AS A4 A3 A2 AL Al]»ﬁ:u@
GND

PCA9LBS "OUER

|1k x 12-bit PWM

Figure 3: Overall setup on an analogue layout

So, obviously, the only restriction in this way of working comes from the number of free pins available. Assuming that only the
12C bus pins are occupied, from the total of 22 available I/0 pins (14 digital plus 8 analogue) we will have 20 free. Based on that
limit we will select a combination. For instance, if we have signals with a total of 10 possible aspects, we will need 10 pins to
select these aspects, and therefore we would have 10 pins available to control up to 10 signals. Another example: if we need to
control 12 signals, we could select a maximum of 8 aspects.

These 20 pins available will cover most of needs. If we need more, we will have two options:

a) Using an Arduino Mega as driving board, instead of a Nano. This will provide a total of 68 free pins, once the two 12C
bus pins have been subtracted. Enough for practically any signal system in the world. Of course, this is a more
expensive option than a Nano, although it still can control only 12 signals and 48 lights. So we would need to carefully
make the case, counting the aspects and signals required, and maybe go for two Nanos with their PCA9685 boards
each, instead of using a single Mega.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

b) Using a numeric keypad, which allows selecting a signal by an ID number, and then an aspect by another number. This
requires a small number of pins, and probably represents the best option in terms of wiring simplicity (always
something to consider in an analogue layout). If this option is chosen, an LCD display would be a good add-on, allowing
to see what we are typing.

For option a) see section 3.5 to specify the connected pins in the code. For option b) program modifications are required, which
is something simple when having basic Arduino programming skills. Option b) is not covered in this document.

3.1.2.2 AUTOMATIC MODE

In this mode, the system will be commanded by an auxiliary automated system to control the traffic of trains in the layout,
normally using reed contacts, presence detectors, timers, relays, etc. Track blocks and interlockings for signals and switches will
be defined.

For instance, a reed contact can be connected to an Arduino pin (in the same way as a push button on Figure 3). Programming
the Arduino board accordingly, a train passing over the contact could change the aspect of a certain signal. Pin number
limitation would be the same as explained in previous pages, depending on the type of Arduino board used.

Given the vast number of possible combinations, interlockings, layouts, train block definitions, control types, and all the
associated configurations, the programming of the traffic control system is left to the user. If the system is complex enough,
probably a separate Arduino board will be required only for that, sending the command to the Arduino signal driver board in a
similar manner as seen in section 4.1 for digital layouts.

3.2 CONNECTING ARDUINO AND PCA9685 BOARDS

PCA9685 boards are connected to the Arduino through 12C bus, using “SDA” pin (data) and “SCL” pin (clock) in both devices, as
shown in Figure 4. On the Arduino Nano, SDA pin is A4 and SCL is A5. NOTE: Please refer to the corresponding documentation in
case of using a different Arduino model.

Maximum length of 12C connections is between 20 and 30 cm. This means that PCA9685 boards must be placed close to the
Arduino and close to the other PCA boards, extending the output wires to the signals instead.

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
https://playground.arduino.cc/Code/Keypad/

GND @

POWER oE®
PCASLAS I2C Address

LI: X LE bit PWM (0pen=0/Closed=1) (L@
dafrult' % | spA@®

vee 11 LE 13 14 15 vec®

BEE
> 'AS Al A3 A2 AL AD+
.GQ.GV,,G.OO..GQ. l I
pi2 D31 $10 6 D5 D4 D3 D2
POWER

PCATLES IEC Address

].l: X LE bit PWM (Open=0/Closed=1)
dairu\c * |

11 LJ.BLL

" vec
-
D13 3V3 REF AD A A5 AL A7 SV
(XXX X @ Y o8N

®-(. .

ce

—
— @
f— -

—1

—
—

ONYN
ONINquY <

POWER
PCA9LAS IEC Address
lb X].E bit PWM u)pen 0/Closed=1)

dalrull

Figure 4: Linking PCA9685 boards to Arduino

In case of requiring more than one PCA9685, these boards can be chained together as shown in Figure 4, using the connections
on their ends. Pins marked as “OE” will be connected also between these boards. The only important remark is the need to
assign different addresses to each of the boards. See here for further information. This is done by soldering some small pads on

the board, which will define the address. The address set in the factory is always “0x40”, so if we just need one board, we do not
need to assign any address. If we need more, most likely there will be no more than three before reaching the limits of signals
and lights for the program. In that case we could assign the address “Ox41” to the second board by soldering its pad marked as
“A0”, and the address “0x42” to the third board, by soldering its pad marked as “A1”. Figure 5 shows a board with address 0x42
as an example, where its pad “A1” has been soldered:

POWER
PCATLAS I2C Address
ilb x l2-bit PUWM (0Open=0/Closed=1)

1dafruit!

Figure 5: Assigning 0x42 address by soldering pin A1

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
https://learn.adafruit.com/16-channel-pwm-servo-driver/chaining-drivers

3.3 SIGNAL CONNECTIONS

Now it is the turn to connect each signal to PCA9685 board outputs.

Each board has 16 outputs, numbered starting from 0 to 15. Each light on each signal will connect to “PWM” and “GND” pins on
one of the board exits. It is not required for all lights in a single signal to be connected to the same PCA9685 board: the position
of each light and signal will be “mapped” later in the software settings (see 3.5.1).

But now it comes the distinction between common-anode and common-cathode signals:

e Common-cathode LED signals have a common negative wire, with one positive connection per light.
e Common-anode LED signals have a common positive wire, with one negative connection per light.

Both types can be connected indistinctly, but keeping in mind its technical particular aspects, detailed as follows.

3.3.1 COMMON CATHODE SIGNALS

PCA9685 boards, as well as many other commercial microcontrollers (including Arduino), provide common-cathode outputs.
“GND” pins are common to all outputs, although they are repeated for practical reasons. Therefore, common-cathode signals
can be connected directly, as seen on Figure 6. LED cathodes will be linked to “GND” pin or pins, and anodes will be connected
to its selected “PWM” pin, through to a suitable resistor. This resistor will depend on the LED type and colour.

Common-cathode signals are typically found in home-built signals.

PCA9LAS I2C Ad r ss

1t x l2-bit PUM (0pen=0/Clas 3=1) scL®
1dafruit! *
) R s 8 9 10 11 5

Figure 6: Example of a four-light common-cathode signal connection

The PCA9685 board output is limited to a 5V / 10 mA current. Given that, it is technically possible to connect the LEDs to the
board directly (without the intermediate resistor) but this is not a recommended practice. It is always desirable to add the
resistors, which also will help us to perfectly balance the brightness of each light in the signal. As said above, the resistor value
for each light will depend on the type and colour of the corresponding LED. This information can be found on each LED
datasheet. For computing the adequate value, the board output current of 5V / 10 mA will be considered.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

10

3.3.2 COMMON ANODE SIGNALS

Most scale trains manufacturers make common-anode signals. If we have such a type of signal, we will need a converter circuit
between the PCA9685 board and the signal (see Figure 7). For each signal, one of these circuits will be required. The converter
will have as many branches as lights has the signal. See Appendix 2 for the schematics and material required to build it.

® o
oov-hoo.—
K3 e ° L e o o 0 0 L]
CGEEINED ¢ ° o
\ o o 0 0
. e o o 0
L] L B
v-'ﬁooo
L] e o 0 0
CGEEEEED ¢ ¢ o
LI B
. o o 0 0
oo 0 0 0 e o 0 0 z
B M N
L] L B B
CGEEEEED ¢ ¢ o
\ e o 00
PCAgLBS POUER] . * 000
1k x l2-bit PUM 3] s . e o 0 0 ——
|’ 1 | 153’"“:! —_— ol l=e o o
o 1 2 3 Y 5 b 7-——=3 9 ey i 5 . e o0 00 .
] L I i —— = =
e o 0 0 0 E
s e o 5 00
@ o

Figure 7: Example of a four-light common-anode signal connection, using a converter circuit

These circuits invert the way the signal works. Whereas in a common-cathode signal we simply gave current to the green LED to
light it, in a common-anode signal connected to a system like ours, we will need to power all the rest of lights and leave the
green LED unpowered if we want to light it. Fortunately, this is done automatically in the software code, thanks to the use of the
PCA9685 boards and their libraries, not requiring any user intervention. This way of working could also cause some imbalances
in terms of light intensity, depending on the number of lights lit-up simultaneously, but this is also considered and corrected on
the software code. However, it must be noted that these compensations will reduce the LED brightness by a factor of 3
compared to a common-cathode system, so this must be considered when computing the resistor value for each LED.

Speaking about LED resistors, commercially available signals often have pre-installed resistors correctly balanced for each
colour, but these are normally computed for 12-16 V currents. If we keep these resistors in place, an excessively dimmed light
will normally be obtained. It is therefore recommended to replace these resistors by new ones, computed accordingly to the
PCA9685 board output (5V / 10 mA) and considering the reduction factor of 3 mentioned above. It is of course a matter of
personal taste, but a good starting point for each resistor value will be to take the original mounted in the signal and divide its
value by three.

3.4 ELECTRICAL FEEDING

The Arduino board will be feed as desired (through USB input, Vin pin, or whatever other applicable method). It is obviously
important to consider all applicable restrictions and instructions for the selected method.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

11

PCA9685 boards require 5 V DC feeding through the “Vcc” (positive) and “GND” (negative) pins on their ends. Note that “V+”
pins will not be used, as these are intended to electrically feed servos instead of LEDs.

It is recommended to use an external stable power source to provide this 5 V DC current to the PCA9685 boards. This will be
almost a requirement if we have a significant number of signals and lights). An old USB mobile phone charger could be used for
this purpose (and could be used also to feed the Arduino through its 5V pin).

IMPORTANT NOTE: If the power sources for the Arduino and the PCA9685 boards are different, negative or ground (GND) pins
of all the boards and the Arduino must be linked together.

3.5 PROGRAM SET-UP

Before uploading the sketch or program code to the Arduino board, it is needed to modify certain program parameters to suit
the configuration of each user. Two sketches are provided: one for digital layouts (inside “digital_version” folder) and one for
manual-mode analogue layouts (inside “analog_version” folder). Required inputs are detailed as follows:

3.5.1 COMMON PARAMETERS

Number of boards and signals

e Number of PCA9685 boards connected to the Arduino (integer value between 1 and 62; normally equal or less than 3)

const uint8 t Numero_placas = 1;

e Number of signals connected to the system through the PCA9685 boards (integer value between 1 and 12):

const uint8 t Numero_semaforos

Common lightning parameters

e Frequency (integer value in Hertzs) of the output current reaching the LEDs. It can be adjusted between 40 and 10000
Hz. A reasonable starting value is 200 Hz: reduce it if a high-pitched noise can be heard, or increase it if there is any
visible blinking effect. It does not affect LED brightness.

const uintl6_t frec = 200,

e Dimming/lightning time (integer value in milliseconds; max. 65535). Defines the time it will take for the LED to reach its
full brightness or to completely fade out. This value will be chosen depending on the type of real-life signal being
represented and its original bulb. 120 ms is a good starting point for classic semaphore signals.

const uintl6 t encendido _ms = 120;

e Blinking time (integer value in milliseconds). Defines the blinking time for signals with blinking aspects, not including the
dimming time defined above (i.e. this will be the time during which the light will be completely on or completely off).

unsigned long periodo = 425;

Therefore, the total time a light will be lit on during a blinking phase will be defined by:

(2 - encendido_ms) + periodo

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

12

e Pause during aspect change (integer value in milliseconds; max. 65535). Defines a pause when changing aspects in a
signal, with all lights off for aesthetical reasons. 100 ms can be a nice starting value.

pausa_aspectos = 100;

Parameters for PCA9685 boards

There are three blocks, corresponding to the maximum supported number of boards. Objects “placa[]” are
numbered from 0to 2 (placa[@], placa[1] and placa[2]). Example for board 2:

placa[2] = Adafruit PWMServoDriver(0x42);

placa[2].begin();
placa[2].setPWMFreq(frec);

IMPORTANT: All three boards are activated by default. Any unused board must be commented adding two slashes (//)
before each line.

In case of needing more than three boards, copy/paste one of these blocks and follow the numbering sequence of the
array "placa[]”.

Apart from that, the only parameter required in this section is the physical address of each board (see section 3.2) in
the function “Adafruit_PWMServoDriver()”. In the following example, the first board (0) corresponds to the
physical address “0x40”:

placa[@] = Adafruit_PWMServoDriver(0x40);

Parameters for signals

Here the working parameters for all installed signals will be introduced. Signals are numbered starting fromQ up to a
maximum value of 11. Note that the maximum index must be consistent with the maximum number of signals
specified: the highest index will be equal to Numero_semaforos - 1.

All 12 blocks are active by default, but only the signals that are actually connected must be active, the rest must be
commented with two slashes (//). For instance, if we have 6 signals, we will only use blocks from 0 to 5, and we will
comment the rest.

Each group or block will contain signal data as follows:

anodo_comun[@] =
pin_dummy[@] =

semaforo[@][0][9]
semaforo[@][0][1]

semaforo[@][1][9]
semaforo[@][1][1]

semaforo[@][2][9]
semaforo[@][2][1]

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

13

semaforo[@][3][9]
semaforo[@][3][1]

semaforo[@][4][9]
semaforo[@][4][1]

comando[@] = 13;

First, the signal type (common anode or common cathode) is defined by setting the parameter “anodo_comun” to
“true” or “false”, respectively. Currently, “pin_dummy“ parameter has no influence, as it is included for a further
evolution of the code. It will be set to “false”.

Next, the array “semaforo[][][]” defines the PCA9685 board and the pin to which each signal light is connected, as
follows:

semaforo[Signal Id][Light Id][Element]

“Signal Id” corresponds to the index assigned to the signal, as explained above.

“Light Id"is assigned from 0 to 4, corresponding to the maximum of five lights per signal. To ease the identification
of each light, comment tags have been added with typical colours: green (for light 0), red (for light 1), yellow (for light
2), white (for light 3) and blue (for light 4). Obviously, it is not required that these tags match the actual signal colours.

“Element” can only take 0 or 1 as possible values: 0 will tell the code we are indicating the PCA9685 board to which
that light is connected, whereas 1 will tell the code we are indicating the pin for that light.

IMPORTANT: In case of not using some of the lights in a signal, do not comment the lines. Instead, the values (both for
pins and boards) in this array will be set to 99. The whole block will be commented only if the entire signal is not used.

Note that different lights from a certain signal can be connected to different boards, taking benefit of the maximum pin
capability of each board.

Finally, the array comando[] will define the initial aspect shown by the signal when starting the system, according to
aspect definition (see Chapter 4).

In the example above, the signal is the first on the list (id number 0) and has four lights. Some of those lights are
connected to board 0, and others to board 1: green light is connected to pin 4 in board 1, and white light to pin 5, also
in board 1. But red and yellow lights are connected to pins 9 and 10 respectively, both in board 0. There is no blue light,
so both pin and board values are set to 99. Initial aspect is set to 13, which corresponds to “Authorized movement”
according to Table 1 in Chapter 4.

3.5.2

DIGITAL VERSION SPECIFIC PARAMETERS

Communications

Adjust here the link rate of the Arduino’s serial port (baud rate):

Serial.begin(9600);

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

14

Obviously, it must match the emitter’s speed (no matter if it is another Arduino, a PC, or any other device). In this
example, it is set to 9600 bauds.

NOTE: The use of Arduino’s main serial port is assumed. If any other one is used (either a physical one in an Arduino
Mega, or a software-emulated port in any other Arduino type) it must be modified here accordingly, and also in
“recepcion_comando” function.

3.5.3

ANALOGUE VERSION SPECIFIC PARAMETERS

Only manual mode is covered in this guide (see 3.1.2)

Amount of controllable aspects

The total number of aspects that can be selected (through their corresponding push buttons) will be indicated here:

Num estados analog = 8;

Signal parameters

On top of common parameters described in 3.5.1, it is required to specify the Arduino pin to which the push button
assigned to each signal is connected:

pin_control[0] = 7;

In this example, signal 0 could be selected through a push button connected to Arduino pin 7.

Aspect push buttons

Here we define the pins to which the aspect selection push buttons are connected, through the “pin_estado[]”
array. The total amount of elements in this array must be consistent with the value “Num_estados_analog” indicated
above.

pin_estado[0]
pin_estado[1]
pin_estado[2]
pin_estado[3]

pin_estado[4]
pin_estado[5]
pin_estado[6]
pin_estado[7]

See Chapter 4 to define aspect values.

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

4 USING THE PROGRAM

Jany
wv

The code wakes up from idle state when receiving an entry command. It then builds up the array “comando[]”, which has as
many elements as signals are connected to the system. For example:

comando[4] = 8

will assign the aspect “Stop” to signal number 4, according to Table 1 below. This table is coded by default, and contains all main
aspects used in Spanish signals (RENFE/ADIF) since Epoch IV (roughly corresponding to the 70’s, see NEM809E) up to present
day, although some of those aspects were present also in older signals. “Postponed stop” and “Departure indication” aspects
are commented, as these are not defined in this version of the software.

Some signals require the use of a channel tagged with a different colour, to light up a board or a an already used colour light:
this does not represent any problem. One example can be found in the “Distant stop warning” aspect, where normally the blue
light channel will be used to light up the signal’s board. Other examples are the “Switch entrance indication” aspects, where
white colour is repeated using another channel.

Assigned aspect

Aspect D Comments

Signal off 0

Proceed 1

Proceed on condition 2

Precaution warning 3

Distant stop warning 4 Board connected to blue channel

Stop warning 5

Immediate stop warning 6

Postponed stop 7 Not defined

Stop 8

Authorized pass (stopping on signal) 9

Authorized pass (no stopping on 10

signal)

Selective stop (fixed blue light) 11

Selective stop (blinking blue light) 12

Authorized movement (on white light 13

signals)

Authorized movement (on blue light 14

signals)

fr\,:ictlf)h entrance indication (straight 15 Upper white light connected to green channel
f::ictlf)h e e e 16 Side white light connected to yellow channel
Departure indication 17 Not defined

S0 e i el T e e 18 Upper red light connected to green channel

lights)

Table 1: Aspect definition (RENFE/ADIF signals)

See Appendix 3 in case of needing to replace, modify, or extend this set of aspects.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

16

The building of the array “comando[]” will depend on the system used (digital or analogue; see 3.1) and is detailed in the
following sections.

4.1 DIGITAL VERSION SPECIFICS

Internal way of working

In a digital system, the Arduino board will receive from the decoder an array named “comando_recibido” through its main
serial port (see note in 3.5.2) which will contain one element per signal. To ease the integration of possible future
enhancements, this array is in fact a data structure named “comando_semaforos”, which so far only includes an integer value
named estado. This value represents the aspect number according to Table 1.

struct comando_semaforos

{

uint8 t estado;

}s

comando_semaforos comando_recibido[Numero_semaforos];

(In this way, it will be possible to send additional information apart from the signal aspect, without requiring significant
modifications in the code)

Then, the code compares the received command with each signal’s current aspect, and builds up the “comando[]“ array to
apply the new aspects, as follows:

comando[i] = comando_recibido[i].estado

“wn
|

(Being “i” each signal’s ID number)

Therefore, to get the system working, we just require the decoder to send the array “comando_recibido” in the right format.

Recommended decoders and command stations

To take benefit of the capabilities of this system (namely handling many different signals with a great variety of aspects) is highly
recommended to have at one’s disposal both a command station and a decoder supporting the “Signal Aspect” protocol. This

protocol allows controlling multi-aspect signals (see Extended Accessory Decoder Control Packet Format in NRMA S-9.2.1).
Configuration of any other protocol, although feasible, can be limited and way more complex, so it is not supported in this guide.

Regarding the decoder, see Appendix 1 for a simple design of a compatible DCC decoder, using a separate Arduino board.

For the command station, a simple and cheap option supporting this protocol could be a home-made mini-command DCC
station made with Arduino (there are several sites on the Internet explaining how to do it). It is also possible to acquire a SPROG
budget command station (which are intended for its use with personal computers, tablets, and mobile phones).

In case of controlling the layout with a computer, some programs allow the connection of several command stations. In this
case, one of the budget command stations mentioned above could be used only to control the signals, leaving the main
command station for driving the trains. This has some advantages, such as balancing energy consumption in big layouts.

Use with computer software (Rocrail, JIMRI, etc)

To take benefit of all possibilities, it is also recommended to configure and handle this signal system using a computer or mobile
device software (JMRI, Rocrail, etc), provided it is compatible with the protocol mentioned above. This will ease a lot not only
the initial setup, but also the handling of complex signals.

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf

17

In case of using Rocrail as controlling software, a ZIP file with SVG aspects for the most common Spanish RENFE/ADIF signals is
included in this package. These SVG files are graphical representations of the signals to be shown in Rocrail’s control panel.
These are symbolic representations (and so are not pretending to be realistic) but serve the purpose of showing each type of
signal with its correct aspects. There is a ReadMe text file with detailed installation instructions and prefixes for setting the
signals up. As an example, Figure 8 shows a 3-light main signal showing the “Precaution warning” aspect.

Figure 8: SVG representation of a signal in Rocrail

To use these SVG files in Rocrail, the folder inside the ZIP file must be copied into Rocrail installation’s “/svg/themes/” folder.
Then, we will need to modify some parameters in the program’s configuration. First, in “Rockview Properties” - “SVG” tag, we
will indicate the path to the folder we have just copied. We shall add the folder in a new line, without replacing any of the

existing ones (see Figure 9).

General Path Trace Programming SVG Gamepad MIC

Accelerators

Theme 1 ‘ E:)\Trenes\Rocrail\svg\themes\RENFE

Properties

Theme 2 ‘ E:\Trenes\Rocrail\svg\themes\SpDrSe0

Theme 3 ‘ E\Trenes\Rocrail\svg\themes\Roads

Theme 4 ‘ EATrenes\Rocrail\svg\themes\Accessaries

Theme 5 ‘ -

Item ID pointsize |7 | Color...

Text pointsize |10 /5 |0 S %
Process route events
Process block events

[[] Show routes on switches.

[]Route priority

Copy to clipboard </>

OK Cancel Help

Figure 9: Rocrail setup

If we use a mobile device or a web browser to control the system, we will need also to configure the folder path in the section

“Rocrail Properties” - “RocWeb” (see Figure 10).

https://elgajoelegante.com/trenes/

Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

18

Rocrail Properties

General Trace Service Automatic Controller R2Rnet Router RocWeb Finder Command mapping

WebClient

Port 8088 =

Path | E\Trenes\Rocrail\web |

Image path | E\Trenes\Rocrail\images |

SVG

Theme 1 | EM\Trenes\Rocrail\svghthemes\RENFE

Theme 2 | E\Trenes\Rocrail\svg\themes\SpDrS60

Theme 4 | E\Trenes\Rocrail\svg\themes\Accessaries

|
|
Theme 3 | E\Trenes\Rocrail\svg\themes\Roads |
|
|

Theme 5 | .

Copy to clipboard <[> ABC Cancel Help

Figure 10: Rocview setup for web/mobile device

Next, we need to modify the properties of each signal in our panel layout. In the “Interface” section of each signal’s
configuration page (see Figure 11) we need to mark the “Aspect numbers” control type and the “Accessory” tick-box. We will
also specify only one DCC address for the signal in the “RED” field, leaving “Port” with value 1. The rest of colours will be set to 0

in all fields.

Now we will select the “Details” tag (see Figure 12) and we will fill in the details for each signal depending on its type, according
to the SVG package’s ReadMe file. We will specify the maximum number of possible aspects for that signal in the “Aspects” box.
We will tick the “Use prefix” box, and we will type the prefix corresponding to the signal type (again, as indicated in the
ReadMe). If we are configuring a dwarf signal, we will obviously mark the “Dwarf” option. Finally, we will copy-paste all aspect
names indicated in the ReadMe file for this signal into the “Aspect names” box, separated by commas.

Last but not least, if the signal is able to reproduce an aspect including blinking lights (such a case will be properly specified in
the ReadMe file) we need to go back to the panel and select the option “Enable alternative SVG” by right-clicking on the signal.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

19

Signal Seméaforo 2 (4/11) X
Index General Interface Wiring Details Usage
Interface ID | SPROG DCS v
NodeID| 0 | 0x00000000 UID-Name| |
RED Control
Port (O Default
- © red O green O Patterns
GREEN @ Aspect numbers
®red Ogreen 8;‘_"“’"
inary
YELLOW O Function
@red Ogreen y’zzcessow
WHITE Output
®rd Ogeen "
Servo
Dim Motor
. Analog
Brightness -
Farameter Backlight
LED
Invert Pair gates Switch []Switch time ms
Command time ms
< ‘ | > ‘ | <[> ‘ | + | ‘ABC| ‘ 0K || Cancel ‘ | Apply | ‘ Help
Figure 11: Configuring a signal in Rocrail (1)
Signal Semaforo 2 (4/11) X
Index General Interface Wiring Details Usage
Signal type Signification
(@ Semaphore signal () Distant signal @) Main signal
O Light signal (O Shunting signal () Block state
Aspects [] Dwarf signal
Patterns / Aspects
RED Address GREEN Address YELLOW Address NumberValue NumberValue
RED @ri OGt ON @R Oa ON @r Oes On (0 B[o [Ho ZH[o [
GREEN @r1 O ON @R O ON @r Oa On (0 [[o [Hlo F[o [
YELOW @pri Og1 ON @R OG ON ®@Rr Ocz On [0 5[0 [5[o sffo 2
WHTE @ri O ON @R O OnN @®r O On (0 o [Hlo Zo [5
BANK @r1 Ol ON @R OG ON @ Oaz On [0 F[o [0 S0 5
Aspect names ‘ Parada,Via libre,Via libre condicional,Anuncio de precaucionAnuncio de parada,Anuncio de parada inmediata,Apagado
< | ‘ > | ‘ <f= | ‘ + | |ABC‘ | OK | | Cancel ‘ ‘ Apply | ‘ Help

Figure 12: Configuring a signal in Rocrail (2)

https://elgajoelegante.com/trenes/

Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

20

4.2 ANALOGUE VERSION SPECIFICS

In an analogue layout, everything will depend on the command entry method and the automation systems installed, as it was
seen in section 3.1.2.

If default manual mode is used (as explained in 3.1.2.1), we will push first one of the buttons to select the signal we want to
command, and then one of the aspect-selection buttons to tell the system the aspect we want on that signal. For example, let us
suppose we have a layout with 12 signals and 8 possible aspects. Each one of the signals will have an associated button to select
it (12 in total) and each one of the aspects will have an associated button as well (8 in total, labelled as “Stop”, “Proceed”, and so
on). If we wanted to assign the aspect “Stop” to the signal #7, we would push first the associated button to that signal (selecting
it) and then the button “Stop”.

Any other way of working will depend heavily on the particular configuration and automation of each layout, and so will require
specific programming.

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

21

5 TROUBLESHOOTING

Common tips:

e Check wiring is according to the code (each cable must be attached to its proper I/O pin).
e Check the parameters in the code for the number of boards and signals match the actual ones installed.
o Check the parameters in the code for the number of boards and signals match the listings of properties for each one.

In digital layouts:

o Check the array size sent by the decoder device matches the actual number of signals expected by the Arduino board,
arranged in proper order, and with the same aspect numbering.

e Check the serial communication is properly set-up between the decoder device and the signal control Arduino board,
the wires between both are crossed (“TX1” and “RX0” if both are Arduino boards) and the baud rate is set to the same
value in both devices.

In analogue layouts (manual mode):

e Check the parameters in the code for the number of push buttons for signal and aspect selection match the actual ones
installed.

e Check the parameters in the code for the number of push buttons for signal and aspect selection match the listings of
properties for each one.

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

22

APPENDIX 1: ARDUINO DCC DECODER

Should we want to decode the DCC signal using an Arduino board, we need to:

1) Install an opto-isolator circuit in between the DCC output (normally the tracks) and the Arduino.
2) Install a decoding program on the Arduino decoder.

An Arduino Nano board will suffice for this purpose.

Tracks / DCC Opto-isolator Arduino

command station circuit (decoder)

Figure 13: Decoder connection schematics

NOTE:, It is highly recommended to use a different Arduino board for decoding tasks than the one used to control the signals.
Although it is possible to use a single board for everything, this imposes some limitations (see 3.1.1).

Opto-isolator circuit

This circuit is required since the DCC tension from the command station or the tracks is often higher (12-18 V in usual gauges)
than the maximum admitted by an Arduino board (5 V). The purpose of this circuit is to electrically isolate both sides, but
allowing signal passthrough. Many schemes can be found on the Internet, all are quite similar. See here for a good example.

It is possible to assembly the opto-isolator circuit on a simple practice breadboard, but a simple printed circuit board design in
Gerber format (“DCC_adaptor-Gerber.zip”) is attached inside the folder “PCB”, allowing to build a better-looking circuit.

Adaptador simple DCC =-=-> Arduino (vl)
1 a |

SI6
o N
RE +5V

EN137? R3 GND

elgajoelegante.com 2021

Figure 14: Opto-isolator printed circuit board

Required components will be as follows:

e D1: Atypical LED (to act as a control light when receiving DCC tension) or 1N4148 (if DCC control light is not required)
e R1:Resistor, value depending on track/DCC tension and command station type. Usually, 1 kQ will be adequate for
typical track tensions (9-14 V); and 2.2 kQ for higher ones (16 or 18 V)

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://www.mynabay.com/dcc_monitor/

23

e 6N137: Opto-isolator integrated circuit 6N137

e R2:10 kQ resistor

e R3:10 kQ resistor

e 1x 2-pin connector, 5.08 mm pitch (DCC input)

e 1x 3-pin connector, 5.08 mm pitch (output to the Arduino decoder)

Tracks or DCC output will be connected to “DCC IN”, and the Arduino decoder to “OUT” as follows:

e “SIG” (signal) will be connected to the Arduino decoder’s input pin (normally pin 2, see below)
e “+5V” will be connected to the Arduino decoder’s 5V pin
e “GND” will be connected to the Arduino decoder’s “GND” pin

Arduino decoder sketch

We will assume here that the Arduino board performing as a decoder is not doing any other tasks.

There are several sketches on the Internet, based on many different libraries, each one with its own advantages and drawbacks.
In the “decoder” folder accompanying to this document there is one example based on the “NmraDcc.h” library (its original
version can be found here).

This sketch uses Arduino’s interruption 0, which is generally associated to pin 2, so this will be the default input pin for the signal
coming from the opto-isolator circuit.

Parameters to be configured before uploading the sketch are detailed as follows:

Installed signals and possible aspects

e Total number of different possible aspects displayed by the installed signals: integer value between 1 and 32. It must be
consistent with “diccionario_tipos” function, and with the signal definition on the control boards:

Numero estados = 19;

e Number of connected signals (integer value; maximum 255). Note that the limit is higher than 12, as we can connect
more than one signal control board to each decoder, using several serial ports:

Numero_semaforos = 12;

DCC function parameters

e DCC address mode. There are two options (lines): select one and comment the other. The first one corresponds to

“Board Addressing” mode (one DCC address with several sub-addresses for each pair of lights in the signal) and the
second corresponds to “Output addressing” mode (unique DCC address for each pair of lights in the signal):

Dcc.init(MAN_ID DIY, 10, CV29 ACCESSORY_DECODER, ©);

Dcc.init(MAN ID DIY, 10, CV29 ACCESSORY DECODER | CV29 OUTPUT ADDRESS MODE, @);

This setting will have no effect if the system uses a third mode, “Signal Aspect” (which is the mode supported in our
control system) but we need anyway to comment one of those two lines. The first one is commented by default
(“Output addressing” is therefore selected).

Signal parameters

Signal parameters will be stored into the “semaforo[]” structure array, including the signal type, its DCC address and
its initial aspect. The signal type (.tipo) is an integer number which must be consistent with the definition in the

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
https://github.com/mrrwa/NmraDcc

24

“diccionario_tipos” function (see below). The DCC address (.direccion_DCC) is also an integer number, that
will match the one assigned to the signal in the command station. Note that we assume a “Signal Aspect” working
mode, as the DCC address will be unique for each signal. Finally, the initial aspect (.estado_inicial) that the signal
will show when turning on the whole system, must be consistent with the aspect definition on the signal control board.

So, for each “semaforo[]” element (counting from 0), there will be a block like the following one:

semaforo[7].direccion_DCC
semaforo[7].tipo = 2;
semaforo[7].estado _inicial

There will be as many of these blocks as the number of signals defined in “Numero_semaforos” parameter, so unused
blocks will be commented, or more blocks will be added if needed.

In the example above, signal number 7 is a type 2 signal (main 3-light signal), its DCC address is 19, and its initial aspect
is 2 (proceed on condition).

Signal type dictionary

The “Signal Packet” standard is based on defining a unique DCC address for each signal, to which the system will send
an integer number between 0 and 31, indicating the commanded aspect for that signal. Many command stations or
control programs supporting the “Signal Packet” standard do not, however, allow to choose freely the number for each
aspect. So, if a signal has seven possible aspects, these will be always numbered from 0 to 6. This is the case when using
Rocrail, for instance.

Problems arise if we have several types of signal mixed in the same system: it can be impossible to set up an aspect list
for each type of signal, in a way that numbers are consecutive starting from 0. For example, if we have a signal capable
to show three aspects (stop, proceed, and precaution warning) these will be numbered from 0 to 2 (at this point we
could select the desired order). But if we have another signal, capable of showing two aspects only (precaution warning
and authorized movement) these will have to be numbered from 0 to 1. And there will be no way to match both signals
in the same system, no matter how we play with the order, as the aspects are different, but the numbering convention
is the same. On top of that, the NMRA standard recommends the first aspect (0) to be always “Stop”, making things
even more complex.

The solution is to introduce a function in the decoder program, acting as a “dictionary” between the command from the
station and the instruction sent to the signal control board with the signal aspect number (which will be unique for that
signal system; see example in Table 1). This function is named “diccionario_tipos”. Values defined in this function
will also allow to indicate the signal type (as seen in previous paragraphs): each signal model will correspond to a case
value in this function.

This function is defined by default for the most typical Spanish RENFE/ADIF signals, consistently with the rest of the
system, and normally it is not needed to modify it unless we want to change the signal system to a different railroad
company, or we want to add/remove/modify signal types. See Appendix 3 for instructions to do this.

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

25

APPENDIX 2: COMMON-ANODE CONVERTER CIRCUIT

One of these circuits will be needed per signal, and each circuit will have as many branches as lights has the signal. The following
list of materials is to be procured per signal:

e 1x 1N4148 diode per each light on the signal
e 1x BC557 transistor per each light on the signal
e 1x 10 kQ resistor per each light on the signal

Figure 15 shows an example of a three-light signal circuit (branches red, green, and yellow, numbered from 1 to 3) but it can be
extended or reduced as required by the number of lights in the signal, just by following the same principle (adding or removing
branches). Note that the negative input connection is in fact a unique common input, although it has been represented by one
“ground” symbol per branch for the sake of simplicity. The PCA9685 outputs will be connected to this circuit’s inputs (“GND” to
the common negative input and “PWR” to each one of the positive inputs). The signal will be connected to the outputs in the
figure, of course including the adequate resistors (or modifying the existing ones in the signal) between each LED and the
negative (-) outputs in the circuit (since this circuit does not reduce tension or current output to the signal).

e
N
1N4148
Ll
N
1N4148
e
N
1N4148
\
COM. OUT (+)
OuT (-) 3 OuUT (-) 2 ouT (-1
1\ A A
10kQ
s —<
INPUT (+) 1
BC557
= COM. INPUT (-)
\‘I 10kQ
P MW gl
INPUT (+) 2
BC557
e COM. INPUT (-)
10kQ
AW —<
INPUT (+) 3
BC557
COM. INPUT (-)

Figure 15: Common-anode converter schematics

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

26

This simple converter can be mounted onto a prototyping breadboard, or better onto a customized PCB. Some simple printed
circuit board designs for these converters (created with KiCad free software) are included into the “PCB” folder: there are
models for signals with 2, 3 and 4 lights, named as “Adaptador_anodo-Anode_adaptor”. In these boards, lights have been
numbered from 1 to 4 to avoid confusion with the different colours a signal may have.

These designs include an area to place the adequate resistors for each LED light, up to a maximum of two resistors (“a” and “b”)
per light in serial configuration (which will cover practically any need). However, in most cases a single resistor will suffice. In
that case, the single resistor can be soldered in diagonal following the line marked as “R eq” (as seen in Figure 16).

mun — 4 canales vi

Figure 16: Detail of output resistor connections in the attached PCB designs

https://elgajoelegante.com/trenes/ Control de semaéforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

27

APPENDIX 3: MODIFYING THE SIGNAL SYSTEM

Should a modification of the existing RENFE/ADIF aspects is required, or a different signal system (i.e., from a different railroad
administration) wants to be represented, the following changes will be required (both in main and decoder programs):

Modlifications to be applied in the main control program

The function “nuevo_estado” needs to be rewritten, defining the new aspects. Up to 255 different aspects are supported.

The structure of this function corresponds to a switch() type, with as many cases as aspect numbers considered (case ©,
case 1, etc) which will indicate each light’s aspect according to the values of “control”and “flag_parpadeo”in Table 2.
Note that argument “indice” is an internal variable, and therefore must remain as it is.

“control[indice][1light]” value “flag_parpadeo” value Light status
0 false Light off
5 false Light on
5 true Light on (blinking)

Table 2: Control variables for each light

Finally, after defining each aspect’s lights, it is required to add the value of “focos_activos”, indicating the total number of
active lights (lights on or blinking) in the signal.

An example is shown hereafter, where an aspect is designated with number 10. In this aspect, red light (1) is on, and white light
(3) is blinking, with the rest of lights off. Therefore, the total number of active lights would be two:

case 1@:
control[indice][1]

flag _parpadeo[indice][1]
control[indice][3]

flag _parpadeo[indice][3]

focos_activos[indice] = 2;

break;

Modifications to be applied in the decoder program

In this sketch, first it is required to change the value of “Numero_estados” with the new total number of possible aspects.

Then, the function “diccionario_tipos” will be modified to define the new signal types and the associated translation table:
from the consecutive list of aspects sent by the command station (see Appendix 1) to the aspects defined in the main control

program (see above).

The structure of the “diccionario_tipos” function corresponds to a switch() type, with as many cases as different signal
types are defined (case 0, case 1, etc). The total number of aspects that can be represented by this signal will be indicated in

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

28

the “aspectos” variable. Then, a list will be created with the so-called translation table between the aspect numbering sent by
the command station and the numbering used by the main control program (in a similar manner as defined in Table 1).

aspectos = 5;

semaforo[id_semaforo].aspecto[0]
semaforo[id_semaforo].aspecto[1]
semaforo[id semaforo].aspecto[2]
semaforo[id_semaforo].aspecto[3]
semaforo[id semaforo].aspecto[4]

break;

In the example above, the signal accepts 5 possible aspects. The command station will number those aspects consecutively,
from 0 to 4, so there will be five lines with “semaforo[id_semaforo].aspecto[]” values, indicating the number for each
aspect in the main control program. In this manner, the third aspect in this signal (Authorized pass - no stopping on signal) will
correspond to number 2 sent by the command station, and number 10 in the main control program (Table 1).

https://elgajoelegante.com/trenes/ Control de seméforos de trenes a escala con Arduino by Dario Calvo Sanchez is licensed under CC BY-NC-SA 4.0

https://elgajoelegante.com/trenes/
https://elgajoelegante.com/trenes/
https://twitter.com/DarioCalvoS
https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

